Minimizing Condition Number via Convex Programming

نویسندگان

  • Zhaosong Lu
  • Ting Kei Pong
چکیده

In this paper we consider minimizing the spectral condition number of a positive semidefinite matrix over a nonempty closed convex set Ω. We show that it can be solved as a convex programming problem, and moreover, the optimal value of the latter problem is achievable. As a consequence, when Ω is positive semidefinite representable, it can be cast into a semidefinite programming problem. We then propose a first-order method to solve the convex programming problem. The computational results show that our method is usually faster than the standard interior point solver SeDuMi [16] while producing a comparable solution. We also study a closely related problem, that is, finding an optimal preconditioner for a positive definite matrix. This problem is not convex in general. We propose a convex relaxation for finding positive definite preconditioners. This relaxation turns out to be exact when finding optimal diagonal preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints

A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, includi...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints

This paper studies the convex multiobjective optimization problem with vanishing constraints‎. ‎We introduce a new constraint qualification for these problems‎, ‎and then a necessary optimality condition for properly efficient solutions is presented‎. ‎Finally by imposing some assumptions‎, ‎we show that our necessary condition is also sufficient for proper efficiency‎. ‎Our results are formula...

متن کامل

Minimizing the Condition Number of a Positive Deenite Matrix by Completion

We consider the problem of minimizing the spectral condition number of a positive deenite matrix by completion: minfcond(positive deeniteg; where A is an n n Hermitian positive deenite matrix, B a p n matrix and X is a free p p Hermitian matrix. We reduce this problem to an optimization problem for a convex function in one variable. Using the minimal solution of this problem we characterize the...

متن کامل

Optimizing Condition Numbers

In this paper we study the problem of minimizing condition numbers over a compact convex subset of the cone of symmetric positive semidefinite n × n matrices. We show that the condition number is a Clarke regular strongly pseudoconvex function. We prove that a global solution of the problem can be approximated by an exact or an inexact solution of a nonsmooth convex program. This asymptotic ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011